37 research outputs found

    Ground states of dispersion-managed nonlinear Schrodinger equation

    Get PDF
    An exact pulse for the parametrically forced nonlinear Schrodinger equation (NLS) is isolated. The equation governs wave envelope propagation in dispersion-managed fiber lines with positive residual dispersion. The pulse is obtained as a ground state of an averaged variational principle associated with the equation governing pulse dynamics. The solutions of the averaged and original equations are shown to stay close for a sufficiently long time. A properly adjusted pulse will therefore exhibit nearly periodic behavior in the time interval of validity of the averaging procedure. Furthermore, we show that periodic variation of dispersion can stabilize spatial solitons in a Kerr medium and one-dimensional solitons in the NLS with quintic nonlinearity. The results are confirmed by numerical simulations

    An instability criterion for nonlinear standing waves on nonzero backgrounds

    Full text link
    A nonlinear Schr\"odinger equation with repulsive (defocusing) nonlinearity is considered. As an example, a system with a spatially varying coefficient of the nonlinear term is studied. The nonlinearity is chosen to be repelling except on a finite interval. Localized standing wave solutions on a non-zero background, e.g., dark solitons trapped by the inhomogeneity, are identified and studied. A novel instability criterion for such states is established through a topological argument. This allows instability to be determined quickly in many cases by considering simple geometric properties of the standing waves as viewed in the composite phase plane. Numerical calculations accompany the analytical results.Comment: 20 pages, 11 figure

    The regularized visible fold revisited

    Full text link
    The planar visible fold is a simple singularity in piecewise smooth systems. In this paper, we consider singularly perturbed systems that limit to this piecewise smooth bifurcation as the singular perturbation parameter ϵ0\epsilon\rightarrow 0. Alternatively, these singularly perturbed systems can be thought of as regularizations of their piecewise counterparts. The main contribution of the paper is to demonstrate the use of consecutive blowup transformations in this setting, allowing us to obtain detailed information about a transition map near the fold under very general assumptions. We apply this information to prove, for the first time, the existence of a locally unique saddle-node bifurcation in the case where a limit cycle, in the singular limit ϵ0\epsilon\rightarrow 0, grazes the discontinuity set. We apply this result to a mass-spring system on a moving belt described by a Stribeck-type friction law

    Piecewise-linear (PWL) canard dynamics : Simplifying singular perturbation theory in the canard regime using piecewise-linear systems

    Get PDF
    International audienceIn this chapter we gather recent results on piecewise-linear (PWL) slow-fast dynamical systems in the canard regime. By focusing on minimal systems in R2\mathbb{R}^2 (one slow and one fast variables) and R3\mathbb{R}^3 (two slow and one fast variables), we prove the existence of (maximal) canard solutions and show that the main salient features from smooth systems is preserved. We also highlight how the PWL setup carries a level of simplification of singular perturbation theory in the canard regime, which makes it more amenable to present it to various audiences at an introductory level. Finally, we present a PWL version of Fenichel theorems about slow manifolds, which are valid in the normally hyperbolic regime and in any dimension, which also offers a simplified framework for such persistence results

    Traveling waves and pattern formation for spatially discrete bistable reaction-diffusion equations (survey)

    Get PDF
    Analysis and Stochastic
    corecore